Муниципальное казенное общеобразовательное учреждение «Средняя общеобразовательная школа № 85 имени Героя Советского Союза Н.Д. Пахотищева г. Тайшета»

 Рассмотрено
 Утверждаю

 на заседании экспертного совета
 И.о. директора МКОУ «СОШ № 85»

 МКОУ «СОШ № 85»
 Шенкнехт О.Н.

 Протокол № 1 от 30.08.2024 г.
 Приказ № 424 от 30.08.2024 г.

Дополнительная общеразвивающая программа технической направленности «Робототехника»

Адресат: обучающиеся 11 - 14 лет

Срок реализации: 1 год Уровень: базовый

Разработчик: Краско Татьяна Михайловна, педагог дополнительного образования

Пояснительная записка

Дополнительная общеразвивающая программа технической направленности «Робототехника» разработана в соответствии с действующим законодательством Российской Федерации.

Данная программа является авторской разработкой, имеет **техническую** направленность.

Уровень: базовый.

Актуальность программы.

На сегодняшний день в России наблюдается нехватка инженерных кадров и отсутствие молодого поколения инженеров, что может стать фактором торможения экономического роста страны. Высшее образование не способно в одиночестве подготовить специалистов, способных выполнять научно-исследовательскую, проектно-конструкторскую, производственно-технологическую деятельность. Исследования технологических компаний показывают, что, если детей в младшем школьном возрасте не заинтересовать и не увлечь инженерными направлениями, то они с низкой долей вероятности смогут успешно продвигаться по инженерной карьере. Кроме того, школьникам важно видеть, что по тем направлениям, по которым начато обучение в школе, они смогут продолжить свои исследования и работу в ВУЗах и коммерческих компаниях. В России уже сейчас просматривается активный рост спроса на продукцию предприятий робототехники во всех производственных сферах и деятельности человека.

Поэтому на занятиях дополнительной общеразвивающей программы предоставляются возможности развивать познавательную активность, творческие способности в процессе учебно-исследовательской деятельности.

Знание основ робототехники способствует развитию навыков программирования и практической работы с техникой, что также является одной из форм профориентационной деятельности в области ІТ-технологий.

Отличительными особенностями программы является то, что постепенное углубление изучаемого материала дает возможность обучающимся создавать свои модели роботов, составлять к ним программы, тем самым реализуя самые смелые фантазии и мысли в этой области.

Адресат программы: дети 11-14 лет. В группу принимаются дети без предварительного отбора. Группы формируются на добровольной основе.

Количество обучающихся в группе 10-15 человек.

К занятиям допускаются дети с OB3.

Продолжительность программы: один год, 54 часа. Занятия проводятся один раз в неделю, продолжительностью 1,5 академического часа (60 минут).

Психолого-педагогическая характеристика возрастных групп.

У детей среднего школьного возраста формируются мотивы самосознания, взглядов, убеждений, мировоззрений. Развивается логическая память и теоретическое мышление, происходит становление способностей подростков. В переходном возрасте максимального уровня достигаются обучаемость, интеллект и креативность (творческие способности).

У детей 11-12 лет - это пора достижений, стремительного наращивания знаний, умений, становления нравственности и открытия «Я», обретения новой социальной позиции. Заметное развитие в этот период приобретают волевые черты характера —

настойчивость, упорство в достижении цели, умение преодолевать трудности. Стремясь познать окружающий мир, подросток испытывает интерес то к одним, то к другим видам деятельности, и в итоге формируются его личностные и профессиональные интересы.

Цель: формирование культуры исследовательской деятельности и освоение приемов программирования и управления робототехникой.

Задачи:

Образовательные:

- рассмотреть комплектацию наборов ПервоРоботов моделей LegoMindstormsEV3 и их назначение,
- изучить программное обеспечение для работы созданных моделей роботов.

Развивающие:

- стимулировать мотивацию учащихся к получению знаний, помощь в формировании творческой личности ребенка,
- развивать интерес к технике, конструированию, программированию, высоким технологиям, формировать навыки коллективного труда, достижений исследователей, естествоиспытателей и творцов техники.

Воспитательные:

- воспитывать целеустремленность, упорство в достижении желаемых результатов, трудолюбие, терпение,
- способствовать формированию и развитию взаимовыручки, взаимопомощи, работе в команде.

Планируемые результаты:

Личностные результаты:

- формирование ответственного отношения к учению и способности учащихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей образовательной траектории образования на базе ориентирования в мире профессий и профессиональных предпочтений с учетом устойчивых познавательных интересов;
- расширение коммуникативные функции языка, углубить возможности лингвистического развития учащегося.

Метапредметные результаты:

- умение самостоятельно планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения;
- умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
- владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее

- решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение;
- ознакомление с практическим применением информационно-коммуникационных технологий, математики и физики.

Предметные результаты:

- приобретение опыта создания реальных и виртуальных демонстрационных моделей;
- обретение навыков проектирования и изготовления простейших механических игрушек, простейших «органов зрения» и «органов слуха» роботов;
- обретение навыков изготовления простейших электронных игр и игрушек;
- формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете.

Программа реализуется с помощью следующих образовательных технологий:

- 1. Проблемное обучение: создание в учебной деятельности проблемных ситуаций и организация активной самостоятельной деятельности обучающихся по их разрешению позволяет учащимся творчески овладевать универсальными учебными действиями, развивать мыслительные способности.
- 2. Проектная деятельность: развитие свободной творческой личности ребёнка с помощью целенаправленной деятельности по определённому плану для решения поисковых, исследовательских, практических задач, в процессе выполнения которых ребёнок познаёт окружающий мир и воплощает новые знания в реальные продукты.

Содержание программы

Знакомство с набором - 6 часов.

Теория: Знакомство с набором ПервоРоботов модели LegoMindstormsEV3.

Практика: Изучение возможностей моторов. Знакомство с сигналами обратной связи, подаваемыми роботом. Изучение ультразвукового датчика.

Подпрограммы – 4 часа.

Теория: Подпрограмма – это маленькая программа. Знакомство с программным обеспечением.

Практика: Продолжение изучения ультразвукового датчика.

Циклические программы – 8 часов.

Теория: Знакомство с циклическим алгоритмом. Знакомство с неизвестными.

Практика: Знакомство с датчиком освещения. Переменная: имя, значение.

Программы с ветвлением – 4 часа.

Теория: Знакомство с алгоритмом ветвления.

Практика: Исправление ошибок. Алгоритм «математического» сглаживания.

Работа с датчиками – 16 часов.

Практика: Движение вдоль стены. Объезд предметов. Изучение ультразвукового датчика. Движение по линии. Совершенствование работы программы с датчиком освещения. Знакомство с датчиками касания. Сравнение показаний датчиков. Изучение гироскопического датчика.

Создание и защита своих проектов – 14 часов.

Практика: Альтернативное управление роботом. Совершенствование программ. Создание моделей роботов. Защита своих проектов.

Учебный план

п/п	Тема	Количество часов					
11/11	Тема	всего	теория	практика	Форма контроля		
1.	Знакомство с набором	6	1	5	Беседа, опрос, практическая		
					деятельность		
2.	Подпрограммы	4	1	3	Беседа, опрос, практическая деятельность		
3.	Циклические программы	8	2	6	Беседа, опрос, практическая деятельность		
4.	Программы с ветвлением	6	1	5	Беседа, опрос, практическая деятельность		
5.	Работа с датчиками	16	0	16	Беседа, практическая деятельность		
6.	Создание и защита своих проектов	14	0	14	Защита проектов (практическая деятельность)		
	Итого	54	5	49			

Календарный учебный график

	сентябр	октябрь	ноябрь	декабрь	январь	февраль	мар	апрель	май
месяц	Ь						T		
тема									
	Количество часов по месяцам: всего (теория-практика)								
Тема 1	6 (1-5)								
Тема 2		4 (1-3)							
Тема 3		2 (1-1)	6 (1-5)						
Тема 4				6(1-5)					
Тема 5					6(0-6)	6(0-6)	4(0-4)		
Тема 6							2(0-2)	6(0-6)	6(0-6)

Организационно-педагогические условия

Материально-технические условия: кабинет информатики, наборы ПервоРоботов модели LegoMindstormsEV3, компьютеры с установленным программным обеспечением для работы созданных моделей роботов.

Информационное обеспечение программы: для реализации программы имеются в наличии инструкции для сборки следующих роботов (Приложение 1):

- Часы
- Селеноход
- Гоночная машина 1
- Гоночная машина 2

- Игра в наперстки
- Гимнаст
- Собачья упряжка
- Скорпион
- Робот Альфарекс
- Крокодил

Кадровое обеспечение программы: реализацию программы осуществляет педагог дополнительного образования, имеющий соответствующее образование, обладающий знаниями и опытом, необходимыми для выполнения возложенных на него обязанностей.

Оценочные материалы и формы контроля

Входной контроль проводится в начале учебного года, включает определение уровня развития обучающихся. Формы входного контроля: беседа, педагогическое наблюдение.

Промежуточный контроль проводится в рамках соревнований по скоростной сборке базового набора робота, а также в рамках соревнований роботов с использованием различных датчиков по достижению цели создания модели робота и программы к нему.

Итоговый контроль проводится в рамках участия в школьном фестивале по робототехнике.

Критерии оценивания: уровневые (высокий, средний, низкий).

<u>Высокий уровень:</u> практическая работа выполнена в полном объеме с соблюдением необходимой последовательности. Обучающиеся работали полностью самостоятельно, показали необходимые для проведения практических работ теоретические знания, практические умения и навыки.

<u>Средний уровень:</u> практическая работа выполнена обучающимися в полном объеме и самостоятельно. Допускается отклонение от необходимой последовательности выполнения, не влияющее на правильность конечного результата. Работа показала знание основного теоретического материала и овладение умениями, необходимыми для самостоятельного выполнения работы. Допускаются неточности и небрежность в выполнении работы.

<u>Низкий уровень</u>: практическая работа выполнена обучающимися с помощью педагога или хорошо подготовленных и уже выполнивших на "отлично" данную работу учащихся. На выполнение работы затрачено много времени (можно дать возможность доделать работу дома). Обучающиеся показали знания теоретического материала, но испытывали затруднения при самостоятельной работе.

Методические материалы

В основе образовательного процесса по реализации данной программы лежит технологии проблемного обучения и проектной деятельности. При организации и осуществлении этого процесса приоритетным являются учебные задачи поискового характера. Процесс достижения цели и поставленных задач осуществляется в сотрудничестве педагога и детей, при этом применяются различные методы осуществления целостности педагогического процесса.

В зависимости от конкретных условий, возрастных особенностей, интересов учащихся педагог может вносить в программу корректировки: сокращать количество

часов по одной теме, увеличивать по другой, добавлять техники, применять новые материалы.

Для реализации программы имеются разработанные:

- инструкции для сборки роботов,
- оценочные листы для учета результатов соревнований моделей роботов и программ к ним (Приложение 2),
- положение о проведении школьного фестиваля по робототехнике.

На занятиях используются различные формы организации образовательного процесса:

- фронтальные (беседа, рассказ, обсуждение и др.);
- групповые (учебные пробы, соревнования и др.);
- индивидуальные (инструктаж, разбор ошибок и др.).

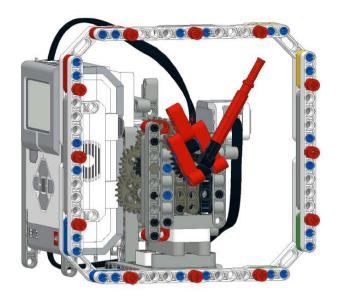
Для предъявления учебной информации используются следующие методы:

- наглядные;
- словесные;
- практические.

Для стимулирования учебно-познавательной деятельности применяются методы:

- соревнования,
- поощрение,
- личный пример.

Для контроля и самоконтроля за эффективностью обучения применяются методы:


- предварительные (наблюдение, опрос);
- текущие (наблюдение, микросоревнование);
- итоговые (соревнование).

Принципы организации деятельности учащихся:

- принцип приоритета самостоятельной деятельности учащихся;
- принцип приоритета практической деятельности учащихся;
- принцип включения в деятельность мыслительных операций анализа, сравнения, классификации, аналогии и обобщения;
- принцип продуктивного повторения.

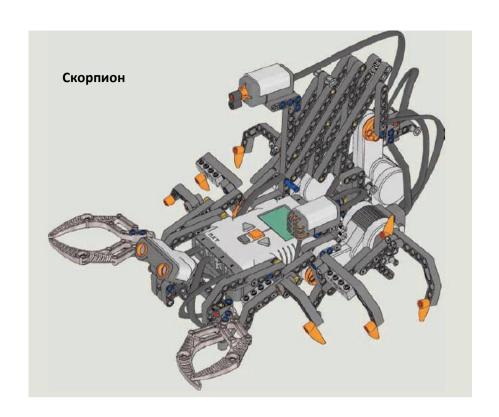
Работа с родителями

- индивидуальные беседы с рекомендациями для каждого конкретного ребенка;
- участие в качестве зрителей на соревнованиях по скоростной сборке базового набора робота, на школьном фестивале по робототехнике;
- рассылка фото и видео с занятий.

Селеноход



Гоночная машина



Гимнаст

Робот Альфарекс

$\label{eq:2.2} \mbox{Оценочный лист для учета результатов соревнований моделей роботов}$

ФИ участника	№ попытки	Учет особенностей датчика	Цель достигнута или нет	Время достижения цели
	1			
	2			